
Plasma oscillations of the carbon peapod

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys.: Condens. Matter 14 10203

(http://iopscience.iop.org/0953-8984/14/43/317)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 18/05/2010 at 15:17

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/14/43
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 14 (2002) 10203–10209 PII: S0953-8984(02)52230-X

Plasma oscillations of the carbon peapod

Y Kornyushin1,2 and W Que1,3

1 Department of Mathematics, Physics and Computer Science, Ryerson University,
350 Victoria Street, Toronto, Ontario, Canada M5B 2K3
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Abstract
We use a jellium model and the classical approach to study plasma oscillations
of a carbon peapod. The dipole–dipole interaction between the C60 molecules
in the array of C60 molecules encapsulated in a carbon nanotube is found to
affect the longitudinal and transverse modes differently. The energy of the
longitudinal mode is lowered, while the energy of the transverse mode is raised.
The coupling between the nanotube and C60 molecules is found to be weak
for longitudinal modes and strong for transverse modes. A carbon peapod is
predicted to have Luttinger liquid behaviour similar to that of a carbon nanotube
alone.

1. Introduction

The discoveries of the C60 fullerene [1] and carbon nanotubes [2] have triggered a great
amount of research on these materials. More recently, it has been found that C60 molecules
can be encapsulated in a carbon nanotube [3–5] and form a one-dimensional crystal within the
nanotube [6, 7]. Such novel systems are called carbon peapods and their physical properties
have not been fully understood. In this paper, we present a first attempt at understanding
the plasmon excitations of carbon peapods. Plasmon excitations in carbon nanotubes and
carbon peapods are extremely important. Electrons in metallic carbon nanotubes have been
shown to exhibit Luttinger liquid behaviour [8–10]. In such nanotubes, at least for small
wavevector q , single-particle excitations are forbidden, and the only possible excitations are
collective modes—plasmon and spin density oscillations. The Luttinger parameter g of a
Luttinger liquid [11] is the ratio between the single-particle excitation energy of a non-
interacting Fermi liquid, and the plasmon energy of an interacting electron system, in the
long-wavelength limit. In an armchair carbon nanotube, both of these energies are linear in
wavevector q in the long-wavelength limit, giving a finite Luttinger parameter g. An intriguing
question is whether this linear relation between the plasmon energy and wavevector q in the
3 Author to whom any correspondence should be addressed.
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long-wavelength limit is destroyed in a carbon peapod, due to nanotube–C60 coupling. A
non-zero term independent of wavevector q in the plasmon energy would destroy the Luttinger
liquid and make a Fermi liquid.

To understand the basic physics of carbon peapods without too many complications from
a detailed model, we use a jellium model for carbon peapods and take a classical physics
approach. Previously, the jellium model has been applied to the C60 molecule [12, 13]
and carbon nanotube [14] with reasonable results. In [12], it was shown that the jellium
model agreed well with a tight-binding model for C60 as far as the plasmon energy is
concerned. Although our approach in general cannot be expected to explain experimental
data in quantitative detail, the simplicity of the model and the approach makes it relatively
easy to gain a qualitative understanding of the basic physics.

2. Model and results

We first discuss models for the constituents of a carbon peapod, the C60 fullerene molecule,
and a metallic carbon nanotube. These models are then combined to study the carbon peapod.

2.1. Fullerene molecule

The spherically shaped C60 molecule has a diameter of 2R f = 0.7065 nm at 110 K [14].
We model the C60 molecule by assuming that the charges of the 60 core ions are uniformly
distributed on the surface of a sphere of radius R f , and the charges of the N f valence electrons
are distributed homogeneously in a spherical layer R f < r < R. The electrostatic potential
arising from the valence electrons can be obtained as a solution of the Poisson’s equation:

∇2ϕ(r) = −4πρ(r), (1)

where ρ is the charge density, which is proportional to the density of the valence electrons n
given by

n = 3N f /4π(R3 − R3
f ). (2)

The angular frequency of the dipole oscillations of the valence electrons was estimated in [13].
Here we develop an improved approach to calculate electrostatic and kinetic energies of the
motion.

Let us imagine that we fill the interior of the sphere with positive and negative electric
charges of the same density as in the spherical layer. This does not change the real electrostatic
potential and the energy of the system considered. The total (real plus imaginary) negative
charge produces, according to Poisson’s equation, the following potential inside the molecule
(e > 0 is the electron charge):

ϕ(r) = ϕ(0) +
eN f

2(R3 − R3
f )

r2. (3)

The total (real plus imaginary) positive charge of the fullerene molecule is

Q p = eN f R3/(R3 − R3
f ). (4)

When the total negative charge is shifted relative to the total positive charge by a distance s,
the change in electrostatic energy is

U = e2 N2
f R3

2(R3 − R3
f )

2
s2. (5)
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During oscillations, when s(t) = s0 sin(ω f t), the time-averaged value of U is

〈U〉 = e2 N2
f R3

4(R3 − R3
f )

2
s2

0 . (6)

Now we evaluate the kinetic energy of the oscillations. Let us assume that the
displacements u inside the electronic cloud are directed along the z-axis and

u(r, t) = r − R f

R − R f
s0 sin(ω f t). (7)

The local velocity v is directed along the z-axis also, and

v(r, t) = ∂u(r, t)

∂ t
= r − R f

R − R f
ω f s0 cos(ω f t). (8)

The kinetic energy is equal to the integral over the volume of the electronic cloud of half of
the product of the density 3m N f /4π(R3 − R3

f ) and the time-averaged value of v2:

〈T 〉 = 0.25m N f ω
2
f s2

0(0.6R2 + 0.3RR f + 0.1R2
f )/(R2 + RR f + R2

f ). (9)

According to the virial theorem, time-averaged values of the kinetic (equation (9)) and potential
(equation (6)) energies of the oscillations for a linear harmonic oscillator should be equal. This
yields

ω f = eR
√

N f R/m f

R3 − R3
f

, (10)

where m f = m(0.6R2 + 0.3RR f + 0.1R2
f )/(R2 + RR f + R2

f ). The angular frequency given
by equation (10) is larger than the one estimated in [13] by a factor of [R3/(R − R f )(0.6R2 +
0.3RR f + 0.1R2

f )]
1/2. For R = 0.538 nm and R f = 0.353 nm, this factor is 1.86.

The experimental value of h̄ω f is about 20 eV [16]. Taking N f = 120 and h̄ω f = 20 eV,
and using equation (10), we come to the following equation for R (in atomic units):

2220R3 = (R − R f )
2(R2 + RR f + R2

f )(6R2 + 3RR f + R2
f ). (11)

Numerical solution of equation (11) yields R = 0.538 nm for R f = 0.353 nm.

2.2. Carbon nanotube

For a metallic carbon nanotube of length l, we assume that the charges of the N ions per unit
tube length are uniformly distributed on the surface of a cylinder of radius Rn, and the charges of
the Nn valence electrons per unit length −eNn are distributed homogeneously in a cylindrical
layer Rn < r < Rne. Plasma oscillations directed along the axis of a carbon nanotube
were considered in [14]. It was shown there that the angular frequency of the oscillations
is ωnl = e(π Nn/ lm Rne)

1/2. This angular frequency is inversely proportional to the square
root of the carbon nanotube length, suggesting that this plasmon is an acoustic mode. Other
theorists also find this plasmon in a single nanotube to be acoustic [17–22],although in a carbon
nanotube bundle this plasmon can become optical due to intertube Coulomb coupling [22].

2.3. Carbon peapod

As in [23] we assume that a periodic array of C60 molecules are encapsulated in a carbon
nanotube, and there is interaction between valence electrons of a carbon nanotube and C60

molecules.
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Low-energy plasma oscillations in a carbon peapod are longitudinal oscillations. Let us
calculate the part of the electrostatic energy (per unit length) which depends on s and h, where
s (h) is the shift between the total negative charge and the positive charge on a C60 molecule
(carbon nanotube). It consists of the energy of the charges arising on the ends of a nanotube
(see [14]),

U1 = πe2 N2
n

2l Rne
h2, (12)

the energy of a fullerene molecule in equation (5) multiplied by the number of fullerene
molecules in a unit length of a peapod n f ,

U2 = e2n f N2
f R3

2(R3 − R3
f )

2
s2, (13)

the interaction energy of the dipole moments of the fullerene molecules en f N f [R3/(R3−R3
f )]s

with the electric field inside a nanotube πe(Nn/ l Rne)h (see [14]),

U3 = πe2n f N f Nn R3

l Rne(R3 − R3
f )

sh, (14)

and the energy due to dipole–dipole interaction in a periodic array of fullerene molecules,

U4 = −2e2n3
f N2

f f (n f l)

l
s2, (15)

where f (k) = ∑k−1
i=1 (k − i)/ i 3. U4 is calculated in the approximation which neglects the size

of a dipole. This approximation underestimates the effect of dipole–dipole interaction. The
total electrostatic energy is the sum of the four terms and has the form

U(s, h) = 1
2 Als

2 + 1
2 Blh

2 + Cl sh,

Al = e2n f N2
f [R3/(R3 − R3

f )
2 − 4n2

f f (n f l)/ l],

Bl = πe2 N2
n / l Rne,

Cl = πe2n f N f Nn R3/ l Rne(R3 − R3
f ).

(16)

Newton’s equations [24] for all the valence electrons in a unit length of a carbon peapod are

m Nn
∂2h

∂ t2
+ Blh + Cl s = 0,

m f n f N f
∂2s

∂ t2
+ Als + Cl h = 0.

(17)

Assuming h = h0 sin(ωt) and s = s0 sin(ωt), we obtain from equation (17) the following
angular frequencies:

ω2
pl1,2 = 1

2

[
(ω2

f − 2�2 + ω2
nl) ±

√
(ω2

f − 2�2 − ω2
nl)

2 + 4πn f (R3/ l Rne)ω
2
f ω

2
nl

]
, (18)

where �2 = 2e2n2
f N f f (n f l)/ lm f , ωnl is the angular frequency of the longitudinal oscillations

in an isolated carbon nanotube, ω f is the angular frequency of the plasmon in an isolated C60

molecule, and
√

ω2
f − 2�2 is the angular frequency of the longitudinal plasma oscillations of

a linear periodic array of C60 molecules. We find that the dipole–dipole interaction between
the C60 molecules reduces the plasmon energy for longitudinal oscillations. We also find in
this model that in a carbon peapod of infinite length, the coupling between the nanotube and
C60 molecules becomes vanishingly small.
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Figure 1. Plasmon energy as a function of wavevector q along the nanotube direction, for a carbon
peapod of finite length. The dotted curve is the plasmon dispersion of an isolated carbon nanotube,
from figure 2 of [22]. The lower (higher) solid curve is the nanotube (fullerene) branch, when
coupling between the nanotube and C60 molecules is taken into account. We used the following
parameter values: h̄ω f = 20 eV, N f = 120, n f = 1.03 nm−1 (from [6]), Nn = 333 nm−1,
R = 0.538 nm, R f = 0.353 nm, Rne = 0.885 nm, Rn = 0.7 nm, and l = 29.1 nm (n f l = 30).
With these values, we have f (n f l) = 34.4, h̄� = 9.07 eV, 4π(n f R3/ lRne ) = 0.0783, and

h̄
√

ω2
f − 2�2 = 15.3 eV.

Since ωnl has been calculated by a full quantum theory in the random phase
approximation [22], we can use results from such a theory to plug into equation (18). The
plasmon in a linear array of fullerene molecules is expected to be almost dispersionless; thus
we can use the value at zero wavevector. Figure 1 shows the coupled longitudinal modes in a
finite-length carbon peapod, where the dotted curve is ωnl obtained from figure 2 of [22]. For
small wavevector q , the coupling between the nanotube and C60 molecules has a negligible
effect, which implies that the carbon peapod should be a Luttinger liquid. In the vicinity

of ωnl =
√

ω2
f − 2�2, the coupling lowers the nanotube branch while it raises the fullerene

branch, forming an anticrossing.
We have also considered transverse oscillations. In that case the total electrostatic energy

is

U(s, h) = e2n f N2
f [R3/2(R3 − R3

f )
2 + n2

f f (n f l)/ l]s2 + e2 N2
n [R2

ne/(R2
ne − R2

n)
2]h2

+ 2e2n f N f Nn[R3/(R2
ne − R2

n)(R3 − R3
f )]sh. (19)

The term [e2n3
f N2

f f (n f l)/ l]s2 in equation (19) represents the energy of the dipole–dipole
interaction between the fullerene molecules. Note that the corresponding term in equation (15)
for the longitudinal case has a different sign and double the magnitude. We obtain the following
angular frequencies for transverse oscillations:

ω2
pt1,2 = 1

2

[
(ω2

f + �2 + ω2
nt) ±

√
(ω2

f + �2 − ω2
nt)

2 + 8(n f R3/R2
ne)ω

2
f ω

2
nt

]
, (20)

where ωnt = eRne
√

2Nn/mn/(R2
ne − R2

n), mn = m(3Rne + Rn)/6(Rne + Rn). The quantity√
ω2

f + �2 is the angular frequency of the transverse plasma oscillations of the linear periodic
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array of C60 molecules. In contrast to the longitudinal case, dipole–dipole interaction between
the C60 molecules increases the plasmon energy for transverse oscillations.

For the same parameter values as in figure 1 and h̄ωnt = 43.4 eV, we have
√

ω2
f + �2 =

22 eV, 8(n f R3/R2
ne) = 1.66, and equation (20) yields h̄ωpt1 = 45.6 eV, and h̄ωpt2 = 16.9 eV.

For the transverse modes, the coupling between the nanotube and C60 molecules is independent
of the tube length. The coupling between the nanotube and C60 molecules raises the energy of
the transverse oscillations in the nanotube, while lowering that of the C60 array.

3. Discussion

We find that the dipole–dipole coupling between C60 molecules in a linear array affects the
longitudinal and transverse modes differently: it lowers the energy of the longitudinal mode,
while it raises the energy of the transverse mode. The coupling between the nanotube and the
encapsulated C60 molecules is negligible for longitudinal modes in long carbon peapods. Its
main effect in a finite-length carbon peapod is to cause an anticrossing between the nanotube
and C60 array longitudinal modes. As for transverse modes, the coupling between the nanotube
and the encapsulated C60 molecules is considerable and independent of tube length.

Calculations show that carbon peapods made of C60 molecules encapsulated in (n, n)

armchair carbon nanotubes are generally metals [23]. For the (8, 8) and (9, 9) peapods, the
energy bands crossing the Fermi level are similar to those of the corresponding carbon nanotube
alone. For the (10, 10) peapod, four bands cross the Fermi level, instead of two bands in the
case of a (10, 10) carbon nanotube. Single-walled (n, n) armchair carbon nanotubes have been
known to exhibit Luttinger liquid behaviour [8–10]. Results from the present work imply that
the Luttinger liquid behaviour should persist in a carbon peapod, and the Luttinger parameter
g is not affected by the plasmon coupling between the nanotube and C60. The value of g in a
carbon peapod could still be different from that of a carbon nanotube, due to the change in the
electronic band structure. For the (9, 9) and (8, 8) carbon peapods, the Luttinger parameter
g should be essentially unchanged. For the (10, 10) carbon peapod, the Luttinger parameter
g should be smaller than that for a (10, 10) carbon nanotube [25] assuming that the band
structure in [23] is correct. The g-value for the (10, 10) carbon peapod can be estimated [25]
to be approximately 30% smaller.

The simple approach used here provides a qualitative understanding of the basic physics,
but a full, quantitative description requires a more detailed and quantum mechanical approach
using the actual band structure. We are not aware of any experiments on plasmons in carbon
peapods.
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